ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Коэффициент стоячей волны (КСВ)

Отношение амплитуды максимумов к амплитуде минимумов в стоячей волне, амплитуды определяются по напряжению.

(из «Словаря терминов» нашего сайта)






Виктор Иванович Чулков, ведущий научный сотрудник Калужского НИИ.
Является автором и руководителем проекта “EDS–Soft” (с 2002 года).
1/ 23все страницы

Влияние краевых эффектов на характеристики широкополосной антенной решетки



Опубликовано: 01.01.2007
© В. И. Чулков, 1991. Все права защищены.
© EDS–Soft, 2007. Все права защищены.


В работе [1] на основе модели бесконечной антенной решетки рассмотрена плоская АР из малогабаритных излучателей с импедансной структурой большой индуктивной величины. Вместе с тем применение в АР излучателей малых электрических размеров при таких же малых расстояниях между ними (сильная взаимная связь) требует ответа на принципиальный вопрос: при каких геометрических размерах излучающего полотна реальной АР уменьшение взаимной связи между излучателями не уменьшит существенно эффективность их работы?

В настоящей статье на примере АР из ЛИ в составе двумерно–периодической АР, размещенных на расстоянии над импедансной структурой (рис.1), проанализированы краевые эффекты, обусловленные конечными размерами раскрыва АР. В качестве сторонней рассматривается волна, распространяющаяся в фидерах равноамплитудно с линейным набегом фаз.

Рис.1

Для перехода от модели бесконечной [1] к модели конечной АР воспользуемся следующим подходом, позволяющим находить характеристики конечной решетки в бесконечном экране с импедансом (рис.1) на основании решения граничной задачи электродинамики для бесконечной АР [2].

Предположим, что излучатели не проявляют себя физически в смысле непосредственного вклада в характеристики АР, если токи на них равны нулю [3]. При этом установившиеся на их входах напряжения формируют краевую волну [4]. Будем считать, что каждый излучатель АР состоит из элементов (например, двухполяризационная АР, многочастотная АР и т.д.). Тогда путь к анализу конечной решетки заключается в следующем:

— к излучателям с номерами подключаем бесконечные по величине нагрузочные сопротивления (холостой ход) через виртуальные фидеры с волновыми сопротивлениями W;

— излучатели с номерами могут быть подключены либо к согласованным нагрузкам, либо к генераторам через фидеры с теми же волновыми сопротивлениями W.

Здесь N — конечное множество номеров излучателей, ограничивающее фрагмент бесконечной периодической решетки, внутри которого находятся интересующие нас излучатели конечной АР. Введем обозначения:

– коэффициент взаимной связи между l-тым элементом m-того излучателя и s-тым элементом n-ного излучателя;

– амплитуда волны основного типа, распространяющейся в направлении ко входу s-того элемента n-ного излучателя;

– амплитуда волны основного типа, распространяющейся в направлении от входа l-того элемента m-того излучателя.

Тогда справедливо очевидное равенство, записанное для простоты применительно к одномерной АР (линейка излучателей):

(1)

Запишем амплитуды падающего поля в виде:

(2)

где — коэффициенты отражения от нагрузок, включенных в s-том возбужденном элементе n-ного излучателя, — то же для невозбужденного элемента, — множество номеров излучателей, где есть хотя бы один возбужденный элемент.

Пусть (т.е. отсутствует зависимость от номера излучателя). Тогда, подставляя (2) в (1), применяя преобразование Фурье и теорему о свертке и переходя к матричной форме записи, нетрудно показать, что амплитуды волны основного типа, распространяющейся в направлении от входов излучателей, удовлетворяют уравнению второго рода:

(3)

где для матриц введены обозначения

S — квадратная матрица рассеяния между элементами излучателя, , , — вектор–столбец , Е — единичная матрица, . Размерности всех матриц определяются величиной М.


1/ 23все страницы

Использованная литература

1. Чулков В. И. О широкополосности плоских антенных решеток микрополосковых излучателей. // Вторая Всесоюзная научно техническая конференция «Устройства и методы прикладной электродинамики», 9...13 сентября 1991 (Одесса). Тезисы докладов. — М.: МАИ, 1991, с. 148.
2. Филиппов В. С. Обобщенный метод последовательных отражений в теории конечных антенных решеток. // Изв. вузов. Радиоэлектроника, 1991, т. 34, №2, с. 26…32.
3. Чаплин А. Ф. Анализ и синтез антенных решеток. — Львов: Изд–во ЛГУ, 1987. 179c.
4. Филиппов В. С. Краевые волны в конечных антенных решетках. // Изв. вузов. Радиоэлектроника. — 1985, т. 28, № 2, с. 61…67.
5. Корн Г., Корн T. Справочник по математике для научных работников и инженеров /Пер. с англ. под ред. И. Г. Арамановича. — M.: Наука, 1968. 720c.
6. Хатсон В., Пим Дж. Приложения функционального анализа и теории операторов. — M.: Мир, 1983. 431c.
7. Положий Г. Н., Пахарева Н. А., Степаненко И. З. и др. Математический практикум /Под ред. Г. Н. Положего. — M.: ГИФМЛ, 1960. 232с.

Статьи за 2007 год

Все статьи

GuidesArray Circular 0.1.4

GuidesArray Circular™ осуществляет электродинамическое моделирование плоских фазированных антенных решеток круглых волноводов с помощью метода моментов.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2024 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров